

Learning Web Design, 4th Edition by
Jennifer Robbins

Creating a Simple Page: (HTML Overview)

IN THIS CHAPTER

 An introduction to elements and attributes

 A Web Page, Step by Step

 Step 2: Give the Document Structure

 Step 5: Change the Look with a Style Sheet

 Troubleshooting broken web pages

Part I provided a general overview of the web design environment. Now

that we’ve covered the big concepts, it’s time to roll up our sleeves and

start creating a real web page. It will be an extremely simple page, but

even the most complicated pages are based on the principles described

here.

In this chapter, we’ll create a web page step by step so you can get a feel

for what it’s like to mark up a document with HTML tags. The exercises

allow you to work along.

This is what I want you to get out of this chapter:

 Get a feel for how markup works, including an understanding

of elements and attributes.

 See how browsers interpret HTML documents.

 Learn the basic structure of an HTML document.

 Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules at

this point; we’ll get to those in the following chapters. For now, just pay

https://learning.oreilly.com/library/view/learning-web-design/9781449337513/
https://learning.oreilly.com/library/view/learning-web-design/9781449337513/
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#web_pagecomma_step_by_step
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#step_2_give_the_document_structure
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#step_5_change_the_look_with_a_style_shee
https://www.oreilly.com/library/view/learning-web-design/9781449337513/pt01.html

attention to the process, the overall structure of the document, and the new

terminology.

A Web Page, Step by Step

You got a look at an HTML document in Chapter 2, but now you’ll get to

create one yourself and play around with it in the browser. The

demonstration in this chapter has five steps that cover the basics of page

production.

 Step 1: Start with content. As a starting point, we’ll write up

raw text content and see what browsers do with it.

 Step 2: Give the document structure. You’ll learn about

HTML element syntax and the elements that give a document its

structure.

 Step 3: Identify text elements. You’ll describe the content

using the appropriate text elements and learn about the proper way

to use HTML.

 Step 4: Add an image. By adding an image to the page, you’ll

learn about attributes and empty elements.

 Step 5: Change the page appearance with a style

sheet. This exercise gives you a taste of formatting content with

Cascading Style Sheets.

By the time we’re finished, you will have written the source document for

the page shown in Figure 4-1. It’s not very fancy, but you have to start

somewhere.

We’ll be checking our work in a browser frequently throughout this

demonstration—probably more than you would in real life. But because

this is an introduction to HTML, it is helpful to see the cause and effect of

each small change to the source file along the way.

Before We Begin, Launch a Text Editor

In this chapter and throughout the book, we’ll be writing out HTML

documents by hand, so the first thing we need to do is launch a text editor.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch02.html
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#in_this_chaptercomma_weapostrophell_writ

The text editor that is provided with your operating system, such as

Notepad (Windows) or TextEdit (Macintosh), will do for these purposes.

Other text editors are fine as long as you can save plain-text files with

the .html extension. If you have a WYSIWYG web-authoring tool such as

Dreamweaver, set it aside for now. I want you to get a feel for marking up

a document manually (see the sidebar HTML the Hard Way).

HTML THE HARD WAY

I stand by my method of teaching HTML the old-fashioned way—by hand. There’s no

better way to truly understand how markup works than typing it out, one tag at a time,

then opening your page in a browser. It doesn’t take long to develop a feel for marking

up documents properly.

Although you may choose to use a web-authoring tool down the line, understanding

HTML will make using your tools easier and more efficient. In addition, you will be glad

that you can look at a source file and understand what you’re seeing. It is also crucial for

troubleshooting broken pages or fine-tuning the default formatting that web tools

produce.

And for what it’s worth, professional web developers tend to mark up content manually

because it gives them better control over the code and allows them to make deliberate

decisions about what elements are used.

This section shows how to open new documents in Notepad and TextEdit.

Even if you’ve used these programs before, skim through for some special

settings that will make the exercises go more smoothly. We’ll start with

Notepad; Mac users can jump ahead.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#html_the_hard_way

Figure 4-1. In this chapter, we’ll write the source document for this page step by

step.

Creating a new document in Notepad (Windows)

These are the steps to creating a new document in Notepad on Windows 7

(Figure 4-2):

1. Open the Start menu and navigate to Notepad (in

Accessories). 1

2. Click on Notepad to open a new document window, and you’re

ready to start typing. 2

3. Next, we’ll make the extensions visible. This step is not

required to make HTML documents, but it will help make the file

types clearer at a glance. Select “Folder Options...” from the Tools

menu 3 and select the View tab 4. Find “Hide extensions for known

file types” and uncheck that option. 5 Click OK to save the

preference, and the file extensions will now be visible.

NOTE

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#creating_a_new_document_in_notepad

In Windows 7, hit the ALT key to reveal the menu to access Tools and Folder Options. In

Windows Vista, it is labeled “Folder and Search Options.”

Figure 4-2. Creating a new document in Notepad.

Creating a new document in TextEdit (Mac OS X)

By default, TextEdit creates “rich text” documents—that is, documents

that have hidden style formatting instructions for making text bold, setting

font size, and so on. You can tell that TextEdit is in rich-text mode when it

has a formatting toolbar at the top of the window (plain-text mode does

not). HTML documents need to be plain-text documents, so we’ll need to

change the format, as shown in this example (Figure 4-3).

1. Use the Finder to look in the Applications folder for TextEdit.

When you’ve found it, double-click the name or icon to launch the

application.

2. TextEdit opens a new document. The text-formatting menu at

the top shows that you are in Rich Text mode. Here’s how you

change it.

3. Open the Preferences dialog box from the TextEdit menu.

4. There are three settings you need to adjust:

On the “New Document” tab, select “Plain text”.

On the “Open and Save” tab, select “Ignore rich text commands in

HTML files” and turn off “Append ‘.txt’ extensions to plain text files”.

5. When you are done, click the red button in the top-left corner.

6. When you create a new document, the formatting menu will no

longer be there and you can save your text as an HTML document.

You can always convert a document back to rich text by selecting

Format → Make Rich Text when you are not using TextEdit for

HTML.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#launching_textedit_and_choosing_plain_te

Figure 4-3. Launching TextEdit and choosing Plain Text settings in the

Preferences.

Step 1: Start with Content

Now that we have our new document, it’s time to get typing. A web page

always starts with content, so that’s where we begin our

demonstration. Exercise 4-1 | Entering content walks you through entering

the raw text content and saving the document in a new folder.

NAMING CONVENTIONS

It is important that you follow these rules and conventions when naming your files:

 Use proper suffixes for your files. HTML and XHTML files must end with .html.

Web graphics must be labeled according to their file format: .gif, .png, or .jpg (.jpeg is

also acceptable).

 Never use character spaces within filenames. It is common to use an

underline character or hyphen to visually separate words within filenames, such

as robbins_bio.html or robbins-bio.html.

 Avoid special characters such as ?, %, #, /, :, ;, •, etc. Limit filenames to

letters, numbers, underscores, hyphens, and periods.

 Filenames may be case-sensitive, depending on your server configuration.

Consistently using all lowercase letters in filenames, although not necessary, is one

way to make your filenames easier to manage.

 Keep filenames short. Short names keep the character count and file size of

your HTML file in check. If you really must give the file a long, multiword name, you

can separate words with hyphens, such as a-long-document-title.html, to improve

readability.

 Self-imposed conventions. It is helpful to develop a consistent naming scheme

for huge sites—for instance, always using lowercase with hyphens between words.

This takes some of the guesswork out of remembering what you named a file when

you go to link to it later.

EXERCISE 4-1 | ENTERING CONTENT

1. Type the content below for the home page into the new document in your

text editor. Copy it exactly as you see it here, keeping the line breaks the same

for the sake of playing along. The raw text for this exercise is available online

at www.learningwebdesign.com/4e/materials/.

2. Black Goose Bistro

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-1_vertical_line_entering_cont
http://www.learningwebdesign.com/4e/materials/

3.

4. The Restaurant

5. The Black Goose Bistro offers casual lunch and dinner fare in

6. a hip atmosphere. The menu changes regularly to highlight the

7. freshest ingredients.

8.

9. Catering

10. You have fun... we'll handle the cooking. Black Goose Catering

11. can handle events from snacks for bridge club to elegant corporate

12. fundraisers.

13.

14. Location and Hours

15. Seekonk, Massachusetts;

16. Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to

midnight

17. Select “Save” or “Save as” from the File menu to get the Save As dialog

box (Figure 4-4). The first thing you need to do is create a new folder that will

contain all of the files for the site (in other words, it’s the local root folder).

Windows: Click the folder icon at the top to create the new folder.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#saving_indexdothtml_in_a_new_folder_call

Mac: Click the “New Folder” button.

Figure 4-4. Saving index.html in a new folder called “bistro”.

Name the new folder bistro, and save the text file as index.html in it. Windows

users, you will also need to choose “All Files” after “Save as type” to prevent

Notepad from adding a “.txt” extension to your filename. The filename needs to

end in .html to be recognized by the browser as a web document. See the

sidebar Naming Conventions for more tips on naming files.

18. Just for kicks, let’s take a look at index.html in a browser. Launch your

favorite browser (I’m using Google Chrome) and choose “Open” or “Open File”

from the File menu. Navigate to index.html, and then select the document to open

it in the browser. You should see something like the page shown in Figure 4-5.

We’ll talk about the results in the following section.

Figure 4-5. A first look at the content in a browser.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#naming_conventions
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#first_look_at_the_content_in_a_browserdo

WHAT BROWSERS IGNORE

Some information in the source document will be ignored when it is viewed in a browser,

including:

 Multiple (white) spaces. When a browser encounters more than one consecutive

blank character space, it displays a single space. So if the document contains:

long, long ago

the browser displays:

long, long ago

 Line breaks (carriage returns). Browsers convert carriage returns to white spaces,

so following the earlier “ignore multiple white spaces rule,” line breaks have no

effect on formatting the page. Text and elements wrap continuously until a new

block element, such as a heading (h1) or paragraph (p), or the line break element

(br) is encountered in the flow of the document text.

 Tabs. Tabs are also converted to character spaces, so guess what? Useless.

 Unrecognized markup. Browsers are instructed to ignore any tag they don’t

understand or that was specified incorrectly. Depending on the element and the

browser, this can have varied results. The browser may display nothing at all, or it

may display the contents of the tag as though it were normal text.

 Text in comments. Browsers will not display text between the special <!-- and --

> tags used to denote a comment. See the Adding Hidden Comments sidebar later

in this chapter.

Learning from step 1

Our content isn’t looking so good (Figure 4-5). The text is all run

together—that’s not how it looked in the original document. There are a

couple of things to be learned here. The first thing that is apparent is that

the browser ignores line breaks in the source document. The sidebar What

Browsers Ignore lists other information in the source that is not displayed

in the browser window.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#adding_hidden_comments
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#first_look_at_the_content_in_a_browserdo
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#what_browsers_ignore
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#what_browsers_ignore

Second, we see that simply typing in some content and naming the

document .html is not enough. While the browser can display the text from

the file, we haven’t indicated the structure of the content. That’s where

HTML comes in. We’ll use markup to add structure: first to the HTML

document itself (coming up in Step 2), then to the page’s content (Step 3).

Once the browser knows the structure of the content, it can display the

page in a more meaningful way.

Step 2: Give the Document Structure

We have our content saved in an .html document—now we’re ready to

start marking it up.

Introducing...HTML elements

Back in Chapter 2, you saw examples of HTML elements with an opening

tag (<p> for a paragraph, for example) and closing tag (</p>). Before we

start adding tags to our document, let’s look at the anatomy of an HTML

element (its syntax) and firm up some important terminology. A generic

container element is labeled in Figure 4-6.

An element consists of both the content and its markup.

Figure 4-6. The parts of an HTML container element.

Elements are identified by tags in the text source. A tag consists of the

element name (usually an abbreviation of a longer descriptive name)

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch02.html
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#parts_of_an_html_container_element

within angle brackets (< >). The browser knows that any text within

brackets is hidden and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and

again in the closing (or end) tag preceded by a slash (/). The closing tag

works something like an “off” switch for the element. Be careful not to use

the similar backslash character in end tags (see the tip Introducing...HTML

elements).

The tags added around content are referred to as the markup. It is

important to note that an element consists of both the content and its

markup (the start and end tags). Not all elements have content, however.

Some are empty by definition, such as the img element used to add an

image to the page. We’ll talk about empty elements a little later in this

chapter.

One last thing...capitalization. In HTML, the capitalization of element

names is not important. So , , and are all the same as far as

the browser is concerned. However, in XHTML (the stricter version of

HTML) all element names must be all lowercase in order to be valid.

Many web developers have come to like the orderliness of the stricter

XHTML markup rules and stick with all lowercase, as I will do in this

book.

TIP

Slash vs. Backslash

HTML tags and URLs use the slash character (/). The slash character is found under the

question mark (?) on the standard QWERTY keyboard.

It is easy to confuse the slash with the backslash character (\), which is found under the

bar character (|). The backslash key will not work in tags or URLs, so be careful not to

use it.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#ch04note02a
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#ch04note02a

Basic document structure

Figure 4-7 shows the recommended minimal skeleton of an HTML5

document. I say “recommended” because the only element that

is required in HTML is the title. But I feel it is better, particularly for

beginners, to explicitly organize documents with the proper structural

markup. And if you are writing in the stricter XHTML, all of the following

elements except meta must be included in order to be valid. Let’s take a

look at what’s going on in Figure 4-7.

1. I don’t want to confuse things, but the first line in the example

isn’t an element at all; it is a document type declaration (also

called DOCTYPE declaration) that identifies this document as an

HTML5 document. I have a lot more to say about DOCTYPE

declarations in Chapter 10, but for this discussion, suffice it to say

that including it lets modern browsers know they should interpret

the document as written according to the HTML5 specification.

2. The entire document is contained within an html element.

The html element is called the root element because it contains all

the elements in the document, and it may not be contained within

any other element. It is used for both HTML and XHTML

documents.

3. Within the html element, the document is divided into

a head and a body. The head element contains descriptive

information about the document itself, such as its title, the style

sheet(s) it uses, scripts, and other types of “meta” information.

4. The meta elements within the head element provide

information about the document itself. A meta element can be used to

provide all sorts of information, but in this case, it specifies

the character encoding (the standardized collection of letters,

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#minimal_structure_of_an_html_document
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#minimal_structure_of_an_html_document
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch10.html

numbers, and symbols) used in the document. I don’t want to go

into too much detail on this right now, but know that there are many

good reasons for specifying the charset in every document, so I have

included it as part of the minimal document structure.

NOTE

Prior to HTML5, the syntax for specifying the character set with the meta element was a bit more

elaborate. If you are writing your documents in HTML 4.01 or XHTML 1.0, your meta element

should look like this:

<meta http-equiv="content-type"

content="text/html;charset=UTF-8">

5. Also in the head is the mandatory title element. According to

the HTML specification, every document must contain a descriptive

title.

6. Finally, the body element contains everything that we want to

show up in the browser window.

Figure 4-7. The minimal structure of an HTML document.

Are you ready to add some structure to the Black Goose Bistro home

page? Open the index.html document and move on to Exercise 4-2 |

Adding basic structure.

EXERCISE 4-2 | ADDING BASIC STRUCTURE

1. Open the newly created document, index.html, if it isn’t open already.

2. Start by adding the HTML5 DOCTYPE declaration:

<!DOCTYPE html>

3. Put the entire document in an HTML root element by adding

an <html> start tag at the very beginning and an </html> end tag at the end of

the text.

4. Next, create the document head that contains the title for the page.

Insert <head> and </head> tags before the content. Within the head element, add

information about the character encoding <meta charset="utf-8">, and the title,

“Black Goose Bistro”, surrounded by opening and closing <title> tags.

The correct terminology is to say that the title element is nested within

the head element. We’ll talk about nesting more in later chapters.

5. Finally, define the body of the document by wrapping the content

in <body> and </body> tags. When you are done, the source document should

look like this (the markup is shown in color to make it stand out):

6. <!DOCTYPE html>

7. <html>

8.

9. <head>

10. <meta charset="utf-8">

11. <title>Black Goose Bistro</title>

12. </head>

13.

14. <body>

15. Black Goose Bistro

16.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-2_vertical_line_adding_basic
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-2_vertical_line_adding_basic

17. The Restaurant

18. The Black Goose Bistro offers casual lunch and dinner fare in a hip

atmosphere. The menu changes regularly to highlight the freshest

ingredients.

19.

20. Catering

21. You have fun... we'll do the cooking. Black Goose catering can

handle events from snacks for bridge club to elegant corporate

fundraisers.

22. Location and Hours Seekonk, Massachusetts; Monday through Thursday

11am to 9pm, Friday and Saturday, 11am to midnight

23. </body>

24.

</html>

25. Save the document in the bistro directory, so that it overwrites the old

version. Open the file in the browser or hit “refresh” or “reload” if it is open

already. Figure 4-8 shows how it should look now.

Figure 4-8. The page in a browser after the document structure elements have been

defined.

Not much has changed after structuring the document, except that the

browser now displays the title of the document in the top bar or tab. If

someone were to bookmark this page, that title would be added to his

Bookmarks or Favorites list as well (see the sidebar Don’t Forget a Good

Title). But the content still runs together because we haven’t given the

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#page_in_a_browser_after_the_document_str
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#donapostrophet_forget_a_good_title
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#donapostrophet_forget_a_good_title

browser any indication of how it should be structured. We’ll take care of

that next.

Step 3: Identify Text Elements

With a little markup experience under your belt, it should be a no-brainer

to add the markup that identifies headings and subheads (h1 and h2),

paragraphs (p), and emphasized text (em) to our content, as we’ll do

in Exercise 4-3 | Defining text elements. However, before we begin, I want

to take a moment to talk about what we’re doing and not doing when

marking up content with HTML.

Introducing...semantic markup

The purpose of HTML is to add meaning and structure to the content. It

is not intended to provide instructions for how the content should look (its

presentation).

Your job when marking up content is to choose the HTML element that

provides the most meaningful description of the content at hand. In the biz,

we call this semantic markup. For example, the most important heading

at the beginning of the document should be marked up as an h1 because it

is the most important heading on the page. Don’t worry about what it

looks like in the browser...you can easily change that with a style sheet.

The important thing is that you choose elements based on what makes the

most sense for the content.

DON’T FORGET A GOOD TITLE

Not only is a title element required for every document, it is quite useful as well. The

title is what is displayed in a user’s Bookmarks or Favorites list and on tabs in desktop

browsers. Descriptive titles are also a key tool for improving accessibility, as they are the

first thing a person hears when using a screen reader. Search engines rely heavily on

document titles as well. For these reasons, it’s important to provide thoughtful and

descriptive titles for all your documents and avoid vague titles, such as “Welcome” or

“My Page.” You may also want to keep the length of your titles in check so they are able

to display in the browser’s title area. Another best practice is to put the part of the title

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-3_vertical_line_defining_text

with more specific information first (for example, the page description ahead of the

company name) so that the page title is visible when multiple tabs are lined up in the

browser window.

In addition to adding meaning to content, the markup gives the document

structure. The way elements follow each other or nest within one another

creates relationships between the elements. You can think of it as an

outline (its technical name is the DOM, for Document Object Model).

The underlying document hierarchy is important because it gives browsers

cues on how to handle the content. It is also the foundation upon which we

add presentation instructions with style sheets and behaviors with

JavaScript. We’ll talk about document structure more in Part III, when we

discuss Cascading Style Sheets, and in Part IV in the JavaScript overview.

Although HTML was intended to be used strictly for meaning and

structure since its creation, that mission was somewhat thwarted in the

early years of the Web. With no style sheet system in place, HTML was

extended to give authors ways to change the appearance of fonts, colors,

and alignment using markup alone. Those presentational extras are still out

there, so you may run across them if you view the source of older sites or a

site made with old tools. In this book, however, we’ll focus on using

HTML the right way, in keeping with the contemporary standards-based,

semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in Exercise

4-3 | Defining text elements.

EXERCISE 4-3 | DEFINING TEXT ELEMENTS

1. Open the document index.html in your text editor, if it isn’t open already.

2. The first line of text, “Black Goose Bistro,” is the main heading for the

page, so we’ll mark it up as a Heading Level 1 (h1) element. Put the opening

tag, <h1>, at the beginning of the line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</h1>

https://www.oreilly.com/library/view/learning-web-design/9781449337513/pt03.html
https://www.oreilly.com/library/view/learning-web-design/9781449337513/pt04.html
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-3_vertical_line_defining_text
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-3_vertical_line_defining_text

3. Our page also has three subheads. Mark them up as Heading Level 2 (h2)

elements in a similar manner. I’ll do the first one here; you do the same for

“Catering” and “Location and Hours”.

<h2>The Restaurant</h2>

4. Each h2 element is followed by a brief paragraph of text, so let’s mark

those up as paragraph (p) elements in a similar manner. Here’s the first one; you

do the rest.

5. <p>The Black Goose Bistro offers casual lunch and

6. dinner fare in a hip atmosphere. The menu changes

7. regularly to highlight the freshest ingredients.

</p>

8. Finally, in the Catering section, I want to emphasize that visitors should

just leave the cooking to us. To make text emphasized, mark it up in an emphasis

element (em) element, as shown here.

9. <p> You have fun... we'll handle the cooking

10. . Black Goose Catering can handle events

11. from snacks for bridge club to elegant corporate

fundraisers.</p>

12. Now that we’ve marked up the document, let’s save it as we did before,

and open (or refresh) the page in the browser. You should see a page that looks

much like the one in Figure 4-9. If it doesn’t, check your markup to be sure that

you aren’t missing any angle brackets or a slash in a closing tag.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#home_page_after_the_content_has_been_mar

Figure 4-9. The home page after the content has been marked up with HTML elements.

Now we’re getting somewhere. With the elements properly identified, the

browser can now display the text in a more meaningful manner. There are

a few significant things to note about what’s happening in Figure 4-9.

Block and inline elements

Although it may seem like stating the obvious, it is worth pointing out that

the heading and paragraph elements start on new lines and do not run

together as they did before. That is because by default, headings and

paragraphs display as block elements. Browsers treat block elements as

though they are in little rectangular boxes, stacked up in the page. Each

block element begins on a new line, and some space is also usually added

above and below the entire element by default. In Figure 4-10, the edges of

the block elements are outlined in red.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#home_page_after_the_content_has_been_mar
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#outlines_show_the_structure_of_the_eleme

Figure 4-10. The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em). It does not

start a new line, but rather stays in the flow of the paragraph. That is

because the em element is an inline element. Inline elements do not start

new lines; they just go with the flow. In Figure 4-10, the inline em element

is outlined in light blue.

ADDING HIDDEN COMMENTS

You can leave notes in the source document for yourself and others by marking them up

as comments. Anything you put between comment tags (<!-- -->) will not display in

the browser and will not have any effect on the rest of the source.

<!-- This is a comment -->

<!-- This is a

 multiple-line comment

 that ends here. -->

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#outlines_show_the_structure_of_the_eleme

Comments are useful for labeling and organizing long documents, particularly when they

are shared by a team of developers. In this example, comments are used to point out the

section of the source that contains the navigation.

<!-- start global nav -->

 ...

<!-- end global nav -->

Bear in mind that although the browser will not display comments in the web page,

readers can see them if they “view source,” so be sure that the comments you leave are

appropriate for everyone. It’s probably a good idea just to strip out notes to your fellow

developers before the site is published. It cuts some bytes off the file size as well.

Default styles

The other thing that you will notice about the marked-up page in Figure 4-

9 and Figure 4-10 is that the browser makes an attempt to give the page

some visual hierarchy by making the first-level heading the biggest and

boldest thing on the page, with the second-level headings slightly smaller,

and so on.

How does the browser determine what an h1 should look like? It uses a

style sheet! All browsers have their own built-in style sheets (called user

agent style sheets in the spec) that describe the default rendering of

elements. The default rendering is similar from browser to browser (for

example, h1s are always big and bold), but there are some variations (long

quotes may or may not be indented).

If you think the h1 is too big and clunky as the browser renders it, just

change it with a style sheet rule. Resist the urge to mark up the heading

with another element just to get it to look better, for example, using

an h3 instead of an h1 so it isn’t as large. In the days before ubiquitous style

sheet support, elements were abused in just that way. Now that there are

style sheets for controlling the design, you should always choose elements

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#home_page_after_the_content_has_been_mar
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#home_page_after_the_content_has_been_mar
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#outlines_show_the_structure_of_the_eleme

based on how accurately they describe the content, and don’t worry about

the browser’s default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but

first, let’s add an image to the page.

Step 4: Add an Image

What fun is a web page with no image? In Exercise 4-4 | Adding an image,

we’ll add an image to the page using the img element. Images will be

discussed in more detail in Chapter 7, but for now, it gives us an

opportunity to introduce two more basic markup concepts: empty elements

and attributes.

Empty elements

So far, nearly all of the elements we’ve used in the Black Goose Bistro

home page have followed the syntax shown in Figure 4-6: a bit of text

content surrounded by start and end tags.

A handful of elements, however, do not have text content because they are

used to provide a simple directive. These elements are said to be empty.

The image element (img) is an example of such an element; it tells the

browser to get an image file from the server and insert it at that spot in the

flow of the text. Other empty elements include the line break (br), thematic

breaks (hr), and elements that provide information about a document but

don’t affect its displayed content, such as the meta element that we used

earlier.

Figure 4-11 shows the very simple syntax of an empty element (compare

to Figure 4-6). If you are writing an XHTML document, the syntax is

slightly different (see the sidebar Empty Elements in XHTML).

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-4_vertical_line_adding_an_ima
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch07.html
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#parts_of_an_html_container_element
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#empty_element_structure
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#parts_of_an_html_container_element
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#empty_elements_in_xhtml

Figure 4-11. Empty element structure.

EMPTY ELEMENTS IN XHTML

In XHTML, all elements, including empty elements, must be closed (or terminated, to

use the proper term). Empty elements are terminated by adding a trailing slash preceded

by a space before the closing bracket, like so: ,
, <meta />, and <hr />.

Here is the line break example using XHTML syntax.

<p>1005 Gravenstein Highway

North
Sebastopol, CA

95472</p>

Attributes

Let’s get back to adding an image with the empty img element. Obviously,

an tag is not very useful by itself—there’s no way to know which

image to use. That’s where attributes come in. Attributes are instructions

that clarify or modify an element. For the img element, the src (short for

“source”) attribute is required, and specifies the location (URL) of the

image file.

Figure 4-12. An img element with attributes.

The syntax for an attribute is as follows:

attributename="value"

Attributes go after the element name, separated by a space. In non-empty

elements, attributes go in the opening tag only:

<element attributename="value">

<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just

keep them separated with spaces.

<element attribute1="value" attribute2="value">

For another way to look at it, Figure 4-12 shows an img element with its

required attributes labeled.

Here’s what you need to know about attributes:

 Attributes go after the element name in the opening tag only,

never in the end tag.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#img_element_with_attributes

 There may be several attributes applied to an element,

separated by spaces in the opening tag. Their order is not

important.

 Most attributes take values, which follow an equals sign (=). In

HTML, some attribute values can be reduced to single descriptive

words—for example, the checked attribute, which makes a checkbox

checked when a form loads. In XHTML, however, all attributes must

have explicit values (checked="checked"). You may hear this type of

attribute called a Boolean attribute because it describes a feature

that is either on or off.

 A value might be a number, a word, a string of text, a URL, or

a measurement, depending on the purpose of the attribute. You’ll

see examples of all of these throughout this book.

 Some values don’t have to be in quotation marks in HTML, but

XHTML requires them. Many developers like the consistency and

tidiness of quotation marks even when authoring HTML. Either

single or double quotation marks are acceptable as long as they are

used consistently; however, double quotation marks are the

convention. Note that quotation marks in HTML files need to be

straight (”) not curly (”).

 Some attributes are required, such as the src and alt attributes

in the img element.

 The attribute names available for each element are defined in

the HTML specifications; in other words, you can’t make up an

attribute for an element.

Now you should be more than ready to try your hand at adding

the img element with its attributes to the Black Goose Bistro page in the

next exercise. We’ll throw a few line breaks in there as well.

EXERCISE 4-4 | ADDING AN IMAGE

1. If you’re working along, the first thing you’ll need to do is get a copy of the

image file on your hard drive so you can see it in place when you open the file

locally. The image file is provided in the materials for this chapter. You can also

get the image file by saving it right from the sample web page online

at www.learningwebdesign.com/4e/materials/chapter04/bistro. Right-click (or Ctrl-click

on a Mac) on the goose image and select “Save to disk” (or similar) from the pop-

up menu as shown in Figure 4-13. Name the file blackgoose.png. Be sure to save it

in the bistro folder with index.html.

2. Once you have the image, insert it at the beginning of the first-level

heading by typing in the img element and its attributes as shown here:

3. <h1><img src="blackgoose.png" alt="Black Goose

logo">Black Goose

Bistro</h1>

The src attribute provides the name of the image file that should be inserted, and

the alt attribute provides text that should be displayed if the image is not

available. Both of these attributes are required in every img element.

Figure 4-13. Saving an image file from a page on the Web.

4. I’d like the image to appear above the title, so let’s add a line break (br)

after the img element to start the headline text on a new line.

http://www.learningwebdesign.com/4e/materials/chapter04/bistro
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#saving_an_image_file_from_a_page_on_the

5. <h1>
Black

Goose Bistro</h1>

6. Let’s break up the last paragraph into three lines for better clarity. Drop

a
 tag at the spots you’d like the line breaks to occur. Try to match the

screenshot in Figure 4-14.

7. Now save index.html and open or refresh it in the browser window. The

page should look like the one shown in Figure 4-14. If it doesn’t, check to make

sure that the image file, blackgoose.png, is in the same directory as index.html. If it

is, then check to make sure that you aren’t missing any characters, such as a

closing quote or bracket, in the img element markup.

NOTE

YOU TRY IT

Add line breaks (br) to the Location and Hours section so your page matches the example in Figure 4-

14.

Figure 4-14. The Black Goose Bistro page with the logo image.

Step 5: Change the Look with a Style Sheet

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#black_goose_bistro_page_with_the_logo_im
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#black_goose_bistro_page_with_the_logo_im
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#black_goose_bistro_page_with_the_logo_im
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#black_goose_bistro_page_with_the_logo_im

Depending on the content and purpose of your website, you may decide

that the browser’s default rendering of your document is perfectly

adequate. However, I think I’d like to pretty up the Black Goose Bistro

home page a bit to make a good first impression on potential patrons.

“Prettying up” is just my way of saying that I’d like to change its

presentation, which is the job of Cascading Style Sheets (CSS).

In Exercise 4-5 | Adding a style sheet, we’ll change the appearance of the

text elements and the page background using some simple style sheet

rules. Don’t worry about understanding them all right now; we’ll get into

CSS in more detail in Part III. But I want to at least give you a taste of

what it means to add a “layer” of presentation onto the structure we’ve

created with our markup.

EXERCISE 4-5 | ADDING A STYLE SHEET

1. Open index.html if it isn’t open already.

2. We’re going to use the style element to apply a very simple embedded

style sheet to the page. (This is just one of the ways to add a style sheet; the

others are covered in Chapter 11.)

The style element is placed inside the head of the document. Start by adding

the style element to the document as shown here:

<head>

 <meta charset="utf-8">

 <title>Black Goose Bistro</title>

 <style>

 </style>

</head>

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#exercise_4-5_vertical_line_adding_a_styl
https://www.oreilly.com/library/view/learning-web-design/9781449337513/pt03.html
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch11.html

3. Now, type the following style rules within the style element just as you

see them here. Don’t worry if you don’t know exactly what is going on (although it

is fairly intuitive). You’ll learn all about style rules in Part III.

4. <style>

5.

6. body {

7. background-color: #faf2e4;

8. margin: 0 15%;

9. font-family: sans-serif;

10. }

11.

12. h1 {

13. text-align: center;

14. font-family: serif;

15. font-weight: normal;

16. text-transform: uppercase;

17. border-bottom: 1px solid #57b1dc;

18. margin-top: 30px;

19. }

20.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/pt03.html

21. h2 {

22. color: #d1633c;

23. font-size: 1em;

24. }

25.

</style>

26. Now it’s time to save the file and take a look at it in the browser. It should

look like the page in Figure 4-15. If it doesn’t, go over the style sheet code to

make sure you didn’t miss a semicolon or a curly bracket.

Figure 4-15. The Black Goose Bistro page after CSS style rules have been applied.

We’re finished with the Black Goose Bistro page. Not only have you

written your first web page, complete with a style sheet, but you’ve also

learned about elements, attributes, empty elements, block and inline

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#black_goose_bistro_page_after_css_style

elements, the basic structure of an HTML document, and the correct use of

markup along the way. Not bad for one chapter!

When Good Pages Go Bad

The previous demonstration went smoothly, but it’s easy for small things

to go wrong when typing out HTML markup by hand. Unfortunately, one

missed character can break a whole page. I’m going to break my page on

purpose so we can see what happens.

What if I had forgotten to type the slash (/) in the closing emphasis tag

()? With just one character out of place (Figure 4-16), the remainder

of the document displays in emphasized (italic) text. That’s because

without that slash, there’s nothing telling the browser to turn “off” the

emphasized formatting, so it just keeps going.

NOTE

Omitting the slash in the closing tag (or even omitting the closing tag itself) for block elements,

such as headings or paragraphs, may not be so dramatic. Browsers interpret the start of a new

block element to mean that the previous block element is finished.

I’ve fixed the slash, but this time, let’s see what would have happened if I

had accidentally omitted a bracket from the end of the first <h2> tag

(Figure 4-17).

See how the headline is missing? That’s because without the closing tag

bracket, the browser assumes that all the following text—all the way up to

the next closing bracket (>) it finds—is part of the <h2> opening tag.

Browsers don’t display any text within a tag, so my heading disappeared.

The browser just ignored the foreign-looking element name and moved on

to the next element.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#when_a_slash_is_omittedcomma_the_browser
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#missing_end_bracket_makes_all_the_follow

Figure 4-16. When a slash is omitted, the browser doesn’t know when the element

ends, as is the case in this example.

Making mistakes in your first HTML documents and fixing them is a great

way to learn. If you write your first pages perfectly, I’d recommend

fiddling with the code as I have here to see how the browser reacts to

various changes. This can be extremely useful in troubleshooting pages

later. I’ve listed some common problems in the sidebar Having

Problems? Note that these problems are not specific to beginners. Little

stuff like this goes wrong all the time, even for the pros.

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#having_problemsquestion_mark
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html#having_problemsquestion_mark

Figure 4-17. A missing end bracket makes all the following content part of the tag,

and therefore it doesn’t display.

Validating Your Documents

One way that professional web developers catch errors in their markup is

to validate their documents. What does that mean? To validate a

document is to check your markup to make sure that you have abided by

all the rules of whatever version of HTML you are using (there are more

than one, as we’ll discuss in Chapter 10). Documents that are error-free are

said to be valid. It is strongly recommended that you validate your

documents, especially for professional sites. Valid documents are more

consistent on a variety of browsers, they display more quickly, and they

are more accessible.

Right now, browsers don’t require documents to be valid (in other words,

they’ll do their best to display them, errors and all), but any time you stray

from the standard you introduce unpredictability in the way the page is

displayed or handled by alternative devices.

So how do you make sure your document is valid? You could check it

yourself or ask a friend, but humans make mistakes, and you aren’t really

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch10.html

expected to memorize every minute rule in the specifications. Instead, you

use a validator, software that checks your source against the HTML

version you specify. These are some of the things validators check for:

 The inclusion of a DOCTYPE declaration. Without it the

validator doesn’t know which version of HTML or XHTML to validate

against.

 An indication of the character encoding for the document.

 The inclusion of required rules and attributes.

 Non-standard elements.

 Mismatched tags.

 Nesting errors.

 Typos and other minor errors.

Developers use a number of helpful tools for checking and correcting

errors in HTML documents. The W3C offers a free online validator

at validator.w3.org. For HTML5 documents, use the online validator

located at html5.validator.nu. Browser developer tools like the Firebug

plug-in for Firefox or the built-in developer tools in Safari and Chrome

also have validators so you can check your work on the fly. If you use

Dreamweaver to create your sites, there is a validator built into that as

well.

HAVING PROBLEMS?

The following are some typical problems that crop up when you are creating web pages

and viewing them in a browser:

I’ve changed my document, but when I reload the page in my browser, it looks

exactly the same.

It could be you didn’t save your document before reloading, or you may have

saved it in a different directory.

Half my page disappeared.

http://validator.w3.org/

This could happen if you are missing a closing bracket (>) or a quotation

mark within a tag. This is a common error when you’re writing HTML by

hand.

I put in a graphic using the img element, but all that shows up is a broken

image icon.

The broken graphic could mean a couple of things. First, it might mean that

the browser is not finding the graphic. Make sure that the URL to the image

file is correct. (We’ll discuss URLs further in Chapter 6.) Make sure that the

image file is actually in the directory you’ve specified. If the file is there,

make sure it is in one of the formats that web browsers can display (GIF,

JPEG, or PNG) and that it is named with the proper suffix (.gif, .jpeg or .jpg,

or .png, respectively).

Test Yourself

Now is a good time to make sure you understand the basics of markup.

Use what you’ve learned in this chapter to answer the following questions.

Answers are in Appendix A.

1. What is the difference between a tag and an element?

2. Write out the recommended minimal structure of an HTML5

document.

3. Indicate whether each of these filenames is an acceptable

name for a web document by circling “Yes” or “No.” If it is not

acceptable, provide the reason why.

a. Sunflower.html Yes No

b. index.doc Yes No

c. cooking home page.html Yes No

d. Song_Lyrics.html Yes No

e. games/rubix.html Yes No

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch06.html
https://www.oreilly.com/library/view/learning-web-design/9781449337513/apa.html

f. %whatever.html Yes No

4. All of the following markup examples are incorrect. Describe

what is wrong with each one, and then write it correctly.

1.

2. <i>Congratulations!<i>

3. linked text</a href="file.html">

4. <p>This is a new paragraph<\p>

5. How would you mark up this comment in an HTML document

so that it doesn’t display in the browser window?

product list begins here

Element Review: Document Structure

This chapter introduced the elements that establish the structure of the

document. The remaining elements introduced in the exercises will be

treated in more depth in the following chapters.

Element Description

body Identifies the body of the document that holds the content

head Identifies the head of the document that contains information about the

document

html The root element that contains all the other elements

meta Provides information about the document

title Gives the page a title

